Chapter 2 Vector Spaces and Matrices

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

Vectors and Matrices

▶ *n*-dimensional column vector and row vector

$$oldsymbol{a} = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix} egin{array}{c} oldsymbol{a}^T = [a_1, a_2, \dots, a_n] \end{array}$$

Properties

a + b = b + a (a + b) + c = a + (b + c) 0 = (0, 0, ..., 0) a + 0 = 0 + a = a $\alpha(a + b) = \alpha a + \alpha b$ $\alpha(\beta a) = (\alpha \beta)a$ $1a = a \qquad (-1)a = -a$ $\alpha 0 = 0 = 0a$

Linearly Independent

- A set of vectors {a₁, ..., a_k} is said to be *linearly independent* if the equality α₁a₁ + α₂a₂ + ... + α_ka_k = 0 implies that all coefficients α_i, i = 1, ..., k, are equal to zero.
- Any set of vectors containing the vector 0 is *linearly dependent*.
- A set of vectors {a₁,..., a_k} is linearly dependent if and only if one of the vectors from the set is a *linear combination* of the remaining vectors.

Subspace

- A subset v of Rⁿ is called a *subspace* of Rⁿ if v is closed under addition and closed under scalar multiplication.
 - If a and b are vectors in V, then the vectors a + b and αa are also in V for every scalar α.
- Let a₁,..., a_k be arbitrary vectors in Rⁿ. The set of all their linear combinations is called the *span* of a₁,..., a_k
- Given a subspace V, any set of linearly independent vectors
 {a₁,..., a_k} ⊂ V such that V = span[a₁, a₂,..., a_k] is referred to as a
 basis of the subspace V.
- All bases of a subspace v contain the same number of vectors.
 This number is called the *dimension* of v.

Subspace

- If {a₁,..., a_k} is a basis of V, then any vector a of V can be represented *uniquely* as a = α₁a₁ + α₂a₂ + ... + α_ka_k, where α_i ∈ R, i = 1, 2, ..., k
- The coefficients α_i, i = 1, 2, ..., k, are called the *coordinates* of a with respect to the basis {a₁, ..., a_k}

Rank of A Matrix $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ $a_k = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix}$

- The maximal number of linearly independent columns of A is called the *rank* of A, denoted by *rank*(A). The *rank*(A) is the dimension of *span*[*a*₁, *a*₂, ..., *a_k*]
- The rank of a matrix *A* is invariant under the following operations:
 - Multiplication of the columns of *A* by nonzero scalars.
 - Interchange of the columns.
 - Addition to a given column a linear combination of other columns.

Determinant

- The determinant of the matrix A = [a₁, a₂, ..., a_n] is a function of its columns and has the following properties:
 - det[$a_1, ..., a_{k-1}, \alpha a_k, ..., a_n$] = $\alpha det[a_1, ..., a_{k-1}, a_k, ..., a_n]$
 - If we have $\boldsymbol{a}_k = \boldsymbol{a}_{k+1}$, $\det(A) = 0$
 - Determinant of an identity matrix is 1.
 - ▶ If one of the columns is **0**, then the determinant is equal to zero.
 - The determinant does not change if we add to a column another column multiplied by a scalar.
 - > The determinant changes its sign if we interchange columns.

Determinant

- A *pth-order minor* of an *m*×*n* matrix *A*, with *p* ≤ min{*m*, *n*}, is the determinant of a *p*×*p* matrix obtained from *A* by deleting *m*-*p* rows and *n*-*p* columns
- If an m×n matrix A (m≥n) has a nonzero nth-order minor, then the columns of A are linearly independent; that is, rank(A)=n.
- The rank of a matrix is equal to the highest order of its nonzero minor(s).
- A *nonsingular* (or *invertible*) matrix is a square matrix whose determinant is nonzero.

Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$$

- Given *m* equations in *n* unknowns of the form
- We can represent the system of equations as Ax = b

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n] \qquad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- The system of equations Ax = b has a solution if and only if rank(A) = rank([A, b])
- If rank(A)=m, a solution to Ax = b can be obtained by assigning arbitrary values for n-m variables and solving for the remaining ones.

General and Particular Solutions

- ▶ Theorem 4.7.2
 - If x₀ denotes any single solution of a consistent linear system Ax = b, and if v₁, v₂, ..., v_k form a basis for the null space of A, (that is, the solution space of the homogeneous system Ax = 0), then every solution of Ax = b can be expressed in the form

 $\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$

Conversely, for all choices of scalars $c_1, c_2, ..., c_k$, the vector **x** in this formula is a solution of A**x** = **b**.

Example (General Solution of $A\mathbf{x} = \mathbf{b}$)

The solution to the nonhomogeneous system

$$x_{1} + 3x_{2} - 2x_{3} + 2x_{5} = 0$$

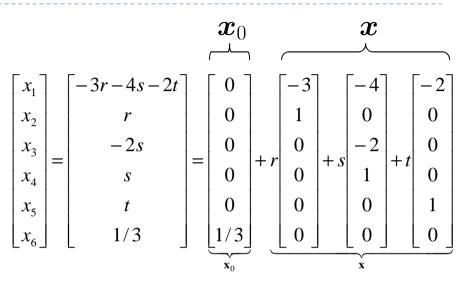
$$2x_{1} + 6x_{2} - 5x_{3} - 2x_{4} + 4x_{5} - 3x_{6} = -1$$

$$5x_{3} + 10x_{4} + 15x_{6} = 5$$

$$2x_{1} + 5x_{2} + 8x_{4} + 4x_{5} + 18x_{6} = 6$$

is

- $x_1 = -3r 4s 2t, x_2 = r,$ $x_3 = -2s, x_4 = s,$ $x_5 = t, x_6 = 1/3$
- The result can be written in vector form as



which is the general solution.

 The vector x₀ is a <u>particular</u> <u>solution</u> of nonhomogeneous system, and the linear combination x is the <u>general solution</u> of the homogeneous system.

▶ For $x, y \in \mathbb{R}^n$, their *Euclidean inner product* is $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^T y$

Properties:

- Positivity: $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \ge 0$, $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = 0$
- Symmetry: $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- Additivity: $\langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle$
- Homogeneity: $\langle r \boldsymbol{x}, \boldsymbol{y} \rangle = r \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for every $r \in R$
- The vectors x and y are said to be *orthogonal* if $\langle x, y \rangle = 0$
- The *Euclidean norm* of a vector x is defined as $\|x\| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x}$

Cauchy-Schwarz Inequality: For any two vectors x and y in Rⁿ, the Cauchy-Schwarz inequality

$$|\langle oldsymbol{x},oldsymbol{y}
angle|\leq \|oldsymbol{x}\|\|oldsymbol{y}\|$$

holds. Furthermore, equality holds if and only if $x = \alpha y$ for some $\alpha \in R$

- > The Euclidean norm of a vector has the following properties
 - Positivity: $\|\boldsymbol{x}\| \ge 0$, $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
 - Homogeneity: $||r\boldsymbol{x}|| = |r|||\boldsymbol{x}||, r \in R$
 - Triangle inequality: $\|\boldsymbol{x} + \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$

- The Euclidean norm is an example of a general *vector norm*, which is any function satisfying the three properties of positivity, homogeneity, and triangle inequality.
- Other vector norms:
 - 1-norm: $\|\boldsymbol{x}\|_1 = |x_1| + \dots + |x_n|$
 - ∞ -norm: $\|\boldsymbol{x}\|_{\infty} = \max_i |x_i|$
- The Euclidean norm is often referred as the 2-norm, denoted by $\|x\|_2$

▶ *p*-norm:
$$\|\boldsymbol{x}\|_p = \begin{cases} (|x_1|^p + \dots + |x_n|^p)^{1/p} & \text{if } 1 \le p < \infty \\ \max\{|x_1|, \dots, |x_n|\} & \text{if } p = \infty \end{cases}$$

- A function f : Rⁿ → R^m is continuous at x if for all ε > 0, there exists δ > 0 such that ||y − x|| < δ ⇒ ||f(y) − f(x)|| < ε.</p>
- If the function *f* is continuous at every point in *Rⁿ*, we say that it is continuous on *Rⁿ*.

- For the complex vector space C^n , we define an inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^n x_i \bar{y}_i$, where the bar denotes complex conjugation.
- Properties:
 - $\land \langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0, \ \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \text{ if and only if } \boldsymbol{x} = 0$
 - $\blacktriangleright \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \overline{\langle \boldsymbol{y}, \boldsymbol{x} \rangle}$

$$\blacktriangleright \quad \langle {\boldsymbol x} + {\boldsymbol y}, {\boldsymbol z} \rangle = \langle {\boldsymbol x}, {\boldsymbol z} \rangle + \langle {\boldsymbol y}, {\boldsymbol z} \rangle$$

$$\land \langle r \boldsymbol{x}, \boldsymbol{y} \rangle = r \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \text{ where } r \in C$$